Influence of Mo alloying on the thermal stability and hardness of ultrafine-grained Ni processed by high-pressure torsion

نویسندگان

  • Garima Kapoor
  • Yi Huang
  • V. Subramanya Sarma
  • Terence G. Langdon
  • Jenő Gubicza
چکیده

The influence of Mo alloying on the thermal stability of grain size, dislocation density and hardness of ultrafine-grained (UFG) Ni alloys was studied. The UFG microstructure in alloys with low (∼0.3 at.%) and high (∼5 at.%) Mo contents was achieved by high-pressure torsion (HPT) performed for 20 turns at room temperature. The thermal stability of the two alloys was studied by calorimetry. A Curie-transition from ferromagnetic to paramagnetic state was not found for the Ni–5% Mo alloy due to the high Mo content. It was found that heating at a rate of 40 K/min up to ∼850 K resulted in a complete recovery and recrystallization of the UFG microstructure in the alloy with 0.3% Mo. The same annealing for Ni–5% Mo led only to a moderate reduction of the dislocation density and the grain size remained in the UFG regime. Therefore, the higher Mo content yielded a much better thermal stability of the Ni alloy. The influence of the change of the microstructure during annealing on the hardness is discussed. © 2017 Brazilian Metallurgical, Materials and Mining Association. Published by Elsevier Editora Ltda. This is an open access article under the CC BY-NC-ND license (http:// creativecommons.org/licenses/by-nc-nd/4.0/).

منابع مشابه

Effect of Ni on Amorphization of Ti-Cu-Ni Ternary alloys Prepared by Mechanical alloying

Amorphous alloys has been taken into consideration because of their unique properties and are nominated as the future engineering materials. In this research, the effect of Ni and milling time on amorphization process and thermal stability of Ti50Cu50-xNix(x=10, 15, 25 at%) alloy system were investigated. The evolution of amorphization during milling, thermal stability and subsequent heat treat...

متن کامل

Microstructural evolution , strengthening and thermal stability of an ultrafine - grained Al - Cu - Mg alloy

To gain insight into the origin of the ultra-high strength of ultrafine-grained (UFG) alloys, the solute clustering, precipitation phenomena, and microstructural evolutions were studied in an UFG Al-4.63Cu-1.51Mg (wt.%) alloy (AA2024) processed by high-pressure torsion (HPT). The thermal analysis was performed using differential scanning calorimetry. The microstructures, internal microstrains a...

متن کامل

Optimization of micro hardness of nanostructure Cu-Cr-Zr alloys prepared by the mechanical alloying using artificial neural networks and genetic algorithm

Cu–Cr-Zr alloys had wide applications in engineering applications such as electrical and welding industrial especially for their high strength, high electrical as well as acceptable thermal conductivities and melting points. It was possible to prepare the nano-structure of these age hardenable alloys using mechanical alloying method as a cheap and mass production technique to prepare the non-eq...

متن کامل

Effect of HPT and CGP Processes on the Copper Me-chanical Properties

One of the most common methods for production of ultra fine grained materials is severe plastic deformation (SPD). In this study, constrained groove pressing (CGP) and high pressure torsion (HPT) processes as effective methods of severe plastic deformation for the strain imposed on the pure copper were used. This paper presents the results of an experimental research, to review the influence of...

متن کامل

Hydrogen evolution activity of NiMo-MoO2 produced by mechanical milling

In this study, mechanical alloying was done by a high-energy planetary ball milling technique. A mixture of NiO and MoO3 and graphite powders were used as initial materials. After milling of powder mixture with 40 wt.% additional graphite, a temperature of 400, 550 and 1000 °C for 1 h was considered for the heat treatment of powder mixture. Also, powder mixtures containing 60, 80 and 100 wt.% a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017